
The Quick Tour
for Symfony 2.5

generated on November 27, 2014

What could be better to make up your own mind than to try out Symfony yourself? Aside from
a little time, it will cost you nothing. Step by step you will explore the Symfony universe. Be
careful, Symfony can become addictive from the very first encounter!



The Quick Tour (2.5)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license. For any reuse or distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.



Contents at a Glance

The Big Picture ...................................................................................................................................4
The View ..........................................................................................................................................12
The Controller ..................................................................................................................................17
The Architecture ...............................................................................................................................21

PDF brought to you by
generated on November 27, 2014

Contents at a Glance | iii

http://sensiolabs.com


Listing 1-1

Listing 1-2

Chapter 1

The Big Picture

Start using Symfony in 10 minutes! This chapter will walk you through some of the most important
concepts behind Symfony and explain how you can get started quickly by showing you a simple project
in action.

If you've used a web framework before, you should feel right at home with Symfony. If not, welcome to
a whole new way of developing web applications.

Installing Symfony
First, check that the PHP version installed on your computer meets the Symfony requirements: 5.3.3 or
higher. Then, open a console and execute the following command to install the latest version of Symfony
in the myproject/ directory:

1 $ composer create-project symfony/framework-standard-edition myproject/ "~2.3"

Add the -vvv flag to see everything that Composer is doing - this is especially useful on a slow
connection where it may seem that nothing is happening.

Composer1 is the package manager used by modern PHP applications and the only recommended
way to install Symfony. To install Composer on your Linux or Mac system, execute the following
commands:

1
2

$ curl -sS https://getcomposer.org/installer | php
$ sudo mv composer.phar /usr/local/bin/composer

To install Composer on a Windows system, download the executable installer2.

1. https://getcomposer.org/

2. http://getcomposer.org/download

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 4

http://sensiolabs.com


Listing 1-3

Listing 1-4

Beware that the first time you install Symfony, it may take a few minutes to download all its components.
At the end of the installation process, the installer will ask you three questions:

1. Would you like to install Acme demo bundle? [y/N] Symfony versions prior to 2.5 included
a demo application to test drive some features of the framework. However, as this demo
application is only useful for newcomers, installing it is now optional. In order to follow this
tutorial, type the y key to install the demo application.

2. Some parameters are missing. Please provide them. Symfony asks you for the value of all
the configuration parameters. For this first project, you can safely ignore this configuration by
pressing the <Enter> key repeatedly.

3. Do you want to remove the existing VCS (.git, .svn..) history? [Y,n]? The development
history of large projects such as Symfony can take a lot of disk space. Press the <Enter> key to
safely remove all this history data.

Running Symfony
Before running Symfony for the first time, execute the following command to make sure that your system
meets all the technical requirements:

1
2

$ cd myproject/
$ php app/check.php

Fix any error reported by the command and then use the PHP built-in web server to run Symfony:

1 $ php app/console server:run

Read more about the internal server in the cookbook.

If you get the error There are no commands defined in the "server" namespace., then you are probably
using PHP 5.3. That's ok! But the built-in web server is only available for PHP 5.4.0 or higher. If you
have an older version of PHP or if you prefer a traditional web server such as Apache or Nginx, read the
Configuring a Web Server article.

Open your browser and access the http://localhost:8000 URL to see the Welcome page of Symfony:

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 5

http://sensiolabs.com


Listing 1-5

Listing 1-6

Understanding the Fundamentals
One of the main goals of a framework is to keep your code organized and to allow your application to
evolve easily over time by avoiding the mixing of database calls, HTML tags and business logic in the
same script. To achieve this goal with Symfony, you'll first need to learn a few fundamental concepts and
terms.

Symfony comes with some sample code that you can use to learn more about its main concepts. Go to
the following URL to be greeted by Symfony (replace Fabien with your first name):

1 http://localhost:8000/app_dev.php/demo/hello/Fabien

Instead of the greeting page, you may see a blank page or an error page. This is caused by a
directory permission misconfiguration. There are several possible solutions depending on your
operating system. All of them are explained in the Setting up Permissions section of the official
book.

What's going on here? Have a look at each part of the URL:

• app_dev.php: This is a front controller. It is the unique entry point of the application and it
responds to all user requests;

• /demo/hello/Fabien: This is the virtual path to the resource the user wants to access.

Your responsibility as a developer is to write the code that maps the user's request (/demo/hello/Fabien)
to the resource associated with it (the Hello Fabien! HTML page).

Routing

Symfony routes the request to the code that handles it by matching the requested URL (i.e. the virtual
path) against some configured paths. The demo paths are defined in the app/config/routing_dev.yml
configuration file:

1
2

# app/config/routing_dev.yml
# ...

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 6

http://sensiolabs.com


Listing 1-7

Listing 1-8

Listing 1-9

3
4
5
6

# AcmeDemoBundle routes (to be removed)
_acme_demo:

resource: "@AcmeDemoBundle/Resources/config/routing.yml"

This imports a routing.yml file that lives inside the AcmeDemoBundle:

1
2
3
4
5
6
7
8
9

10
11

# src/Acme/DemoBundle/Resources/config/routing.yml
_welcome:

path: /
defaults: { _controller: AcmeDemoBundle:Welcome:index }

_demo:
resource: "@AcmeDemoBundle/Controller/DemoController.php"
type: annotation
prefix: /demo

# ...

The first three lines (after the comment) define the code that is executed when the user requests the "/"
resource (i.e. the welcome page you saw earlier). When requested, the AcmeDemoBundle:Welcome:index
controller will be executed. In the next section, you'll learn exactly what that means.

In addition to YAML files, routes can be configured in XML or PHP files and can even be
embedded in PHP annotations. This flexibility is one of the main features of Symfony, a framework
that never imposes a particular configuration format on you.

Controllers

A controller is a PHP function or method that handles incoming requests and returns responses (often
HTML code). Instead of using the PHP global variables and functions (like $_GET or header()) to
manage these HTTP messages, Symfony uses objects: Request and Response. The simplest possible
controller might create the response by hand, based on the request:

1
2
3
4
5

use Symfony\Component\HttpFoundation\Response;

$name = $request->get('name');

return new Response('Hello '.$name);

Symfony chooses the controller based on the _controller value from the routing configuration:
AcmeDemoBundle:Welcome:index. This string is the controller logical name, and it references the
indexAction method from the Acme\DemoBundle\Controller\WelcomeController class:

1
2
3
4
5
6
7
8
9

// src/Acme/DemoBundle/Controller/WelcomeController.php
namespace Acme\DemoBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class WelcomeController extends Controller
{

public function indexAction()
{

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 7

http://sensiolabs.com


Listing 1-10

Listing 1-11

Listing 1-12

10
11
12

return $this->render('AcmeDemoBundle:Welcome:index.html.twig');
}

}

You could have used the full class and method name -
Acme\DemoBundle\Controller\WelcomeController::indexAction - for the _controller value.
But using the logical name is shorter and allows for more flexibility.

The WelcomeController class extends the built-in Controller class, which provides useful shortcut
methods, like the render() method that loads and renders a template
(AcmeDemoBundle:Welcome:index.html.twig). The returned value is a Response object populated with
the rendered content. So, if the need arises, the Response can be tweaked before it is sent to the browser:

1
2
3
4
5
6
7

public function indexAction()
{

$response = $this->render('AcmeDemoBundle:Welcome:index.txt.twig');
$response->headers->set('Content-Type', 'text/plain');

return $response;
}

No matter how you do it, the end goal of your controller is always to return the Response object that
should be delivered back to the user. This Response object can be populated with HTML code, represent
a client redirect, or even return the contents of a JPG image with a Content-Type header of image/jpg.

The template name, AcmeDemoBundle:Welcome:index.html.twig, is the template logical name and it
references the Resources/views/Welcome/index.html.twig file inside the AcmeDemoBundle (located
at src/Acme/DemoBundle). The Bundles section below will explain why this is useful.

Now, take a look at the routing configuration again and find the _demo key:

1
2
3
4
5
6

# src/Acme/DemoBundle/Resources/config/routing.yml
# ...
_demo:

resource: "@AcmeDemoBundle/Controller/DemoController.php"
type: annotation
prefix: /demo

The logical name of the file containing the _demo routes is @AcmeDemoBundle/Controller/
DemoController.php and refers to the src/Acme/DemoBundle/Controller/DemoController.php file.
In this file, routes are defined as annotations on action methods:

1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

class DemoController extends Controller
{

/**
* @Route("/hello/{name}", name="_demo_hello")
* @Template()
*/
public function helloAction($name)
{

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 8

http://sensiolabs.com


Listing 1-13

13
14
15
16
17

return array('name' => $name);
}

// ...
}

The @Route() annotation creates a new route matching the /hello/{name} path to the helloAction()
method. Any string enclosed in curly brackets, like {name}, is considered a variable that can be directly
retrieved as a method argument with the same name.

If you take a closer look at the controller code, you can see that instead of rendering a template
and returning a Response object like before, it just returns an array of parameters. The @Template()
annotation tells Symfony to render the template for you, passing to it each variable of the returned
array. The name of the template that's rendered follows the name of the controller. So, in this example,
the AcmeDemoBundle:Demo:hello.html.twig template is rendered (located at src/Acme/DemoBundle/
Resources/views/Demo/hello.html.twig).

Templates

The controller renders the src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig template
(or AcmeDemoBundle:Demo:hello.html.twig if you use the logical name):

1
2
3
4
5
6
7
8

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

{% block title "Hello " ~ name %}

{% block content %}
<h1>Hello {{ name }}!</h1>

{% endblock %}

By default, Symfony uses Twig3 as its template engine but you can also use traditional PHP templates if
you choose. The second part of this tutorial will introduce how templates work in Symfony.

Bundles

You might have wondered why the Bundle word is used in many names you have seen so far. All the code
you write for your application is organized in bundles. In Symfony speak, a bundle is a structured set
of files (PHP files, stylesheets, JavaScripts, images, ...) that implements a single feature (a blog, a forum,
...) and which can be easily shared with other developers. As of now, you have manipulated one bundle,
AcmeDemoBundle. You will learn more about bundles in the last part of this tutorial.

Working with Environments
Now that you have a better understanding of how Symfony works, take a closer look at the bottom of any
Symfony rendered page. You should notice a small bar with the Symfony logo. This is the "Web Debug
Toolbar", and it is a Symfony developer's best friend!

3. http://twig.sensiolabs.org/

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 9

http://sensiolabs.com


Listing 1-14

But what you see initially is only the tip of the iceberg; click on any of the bar sections to open the profiler
and get much more detailed information about the request, the query parameters, security details, and
database queries:

Of course, it would be unwise to have this tool enabled when you deploy your application, so by default,
the profiler is not enabled in the prod environment.

What is an Environment?

An Environment represents a group of configurations that's used to run your application. Symfony
defines two environments by default: dev (suited for when developing the application locally) and prod
(optimized for when executing the application on production).

Typically, the environments share a large amount of configuration options. For that reason, you put your
common configuration in config.yml and override the specific configuration file for each environment
where necessary:

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 10

http://sensiolabs.com


Listing 1-15

1
2
3
4
5
6
7

# app/config/config_dev.yml
imports:

- { resource: config.yml }

web_profiler:
toolbar: true
intercept_redirects: false

In this example, the dev environment loads the config_dev.yml configuration file, which itself imports
the common config.yml file and then modifies it by enabling the web debug toolbar.

When you visit the app_dev.php file in your browser, you're executing your Symfony application in the
dev environment. To visit your application in the prod environment, visit the app.php file instead.

The demo routes in our application are only available in the dev environment. Therefore, if you try to
access the http://localhost/app.php/demo/hello/Fabien URL, you'll get a 404 error.

If instead of using PHP's built-in webserver, you use Apache with mod_rewrite enabled and take
advantage of the .htaccess file Symfony provides in web/, you can even omit the app.php part of
the URL. The default .htaccess points all requests to the app.php front controller:

1 http://localhost/demo/hello/Fabien

For more details on environments, see "Environments & Front Controllers" article.

Final Thoughts
Congratulations! You've had your first taste of Symfony code. That wasn't so hard, was it? There's a lot
more to explore, but you should already see how Symfony makes it really easy to implement web sites
better and faster. If you are eager to learn more about Symfony, dive into the next section: "The View".

PDF brought to you by
generated on November 27, 2014

Chapter 1: The Big Picture | 11

http://sensiolabs.com


Listing 2-1

Chapter 2

The View

After reading the first part of this tutorial, you have decided that Symfony was worth another 10 minutes.
In this second part, you will learn more about Twig1, the fast, flexible, and secure template engine for
PHP. Twig makes your templates more readable and concise; it also makes them more friendly for web
designers.

Getting familiar with Twig

The official Twig documentation2 is the best resource to learn everything about this new template engine.
This section just gives you a quick overview of its main concepts.

A Twig template is a text file that can generate any type of content (HTML, CSS, JavaScript, XML,
CSV, LaTeX, ...). Twig elements are separated from the rest of the template contents using any of these
delimiters:

• {{ ... }}: prints the content of a variable or the result of an expression;
• {% ... %}: controls the logic of the template; it is used for example to execute for loops and

if statements;
• {# ... #}: allows including comments inside templates.

Below is a minimal template that illustrates a few basics, using two variables page_title and
navigation, which would be passed into the template:

1
2
3
4
5
6
7
8
9

<!DOCTYPE html>
<html>

<head>
<title>{{ page_title }}</title>

</head>
<body>

<h1>{{ page_title }}</h1>

<ul id="navigation">

1. http://twig.sensiolabs.org/

2. http://twig.sensiolabs.org/documentation

PDF brought to you by
generated on November 27, 2014

Chapter 2: The View | 12

http://sensiolabs.com


Listing 2-2

Listing 2-3

Listing 2-4

10
11
12
13
14
15

{% for item in navigation %}
<li><a href="{{ item.url }}">{{ item.label }}</a></li>

{% endfor %}
</ul>

</body>
</html>

To render a template in Symfony, use the render method from within a controller and pass the variables
needed as an array using the optional second argument:

1
2
3

$this->render('AcmeDemoBundle:Demo:hello.html.twig', array(
'name' => $name,

));

Variables passed to a template can be strings, arrays, or even objects. Twig abstracts the difference
between them and lets you access "attributes" of a variable with the dot (.) notation. The following code
listing shows how to display the content of a variable depending on the type of the variable passed by the
controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

{# 1. Simple variables #}
{# array('name' => 'Fabien') #}
{{ name }}

{# 2. Arrays #}
{# array('user' => array('name' => 'Fabien')) #}
{{ user.name }}

{# alternative syntax for arrays #}
{{ user['name'] }}

{# 3. Objects #}
{# array('user' => new User('Fabien')) #}
{{ user.name }}
{{ user.getName }}

{# alternative syntax for objects #}
{{ user.name() }}
{{ user.getName() }}

Decorating Templates
More often than not, templates in a project share common elements, like the well-known header and
footer. Twig solves this problem elegantly with a concept called "template inheritance". This feature
allows you to build a base "layout" template that contains all the common elements of your site and
defines "blocks" that child templates can override.

The hello.html.twig template uses the extends tag to indicate that it inherits from the common
layout.html.twig template:

1
2
3
4
5

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

{% block title "Hello " ~ name %}

PDF brought to you by
generated on November 27, 2014

Chapter 2: The View | 13

http://sensiolabs.com


Listing 2-5

Listing 2-6

Listing 2-7

Listing 2-8

6
7
8

{% block content %}
<h1>Hello {{ name }}!</h1>

{% endblock %}

The AcmeDemoBundle::layout.html.twig notation sounds familiar, doesn't it? It is the same notation
used to reference a regular template. The :: part simply means that the controller element is empty, so
the corresponding file is directly stored under the Resources/views/ directory of the bundle.

Now, simplify the layout.html.twig template:

1
2
3
4
5

{# src/Acme/DemoBundle/Resources/views/layout.html.twig #}
<div>

{% block content %}
{% endblock %}

</div>

The {% block %} tags tell the template engine that a child template may override those portions of the
template. In this example, the hello.html.twig template overrides the content block, meaning that the
"Hello Fabien" text is rendered inside the <div> element.

Using Tags, Filters, and Functions
One of the best feature of Twig is its extensibility via tags, filters, and functions. Take a look at the
following sample template that uses filters extensively to modify the information before displaying it to
the user:

1
2
3
4
5
6
7

<h1>{{ article.title|trim|capitalize }}</h1>

<p>{{ article.content|striptags|slice(0, 1024) }}</p>

<p>Tags: {{ article.tags|sort|join(", ") }}</p>

<p>Next article will be published on {{ 'next Monday'|date('M j, Y')}}</p>

Don't forget to check out the official Twig documentation3 to learn everything about filters, functions and
tags.

Including other Templates

The best way to share a snippet of code between several templates is to create a new template fragment
that can then be included from other templates.

First, create an embedded.html.twig template:

1
2

{# src/Acme/DemoBundle/Resources/views/Demo/embedded.html.twig #}
Hello {{ name }}

And change the hello.html.twig template to include it:

1
2

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

3. http://twig.sensiolabs.org/documentation

PDF brought to you by
generated on November 27, 2014

Chapter 2: The View | 14

http://sensiolabs.com


Listing 2-9

Listing 2-10

Listing 2-11

Listing 2-12

3
4
5
6
7

{# override the body block from embedded.html.twig #}
{% block content %}

{{ include("AcmeDemoBundle:Demo:embedded.html.twig") }}
{% endblock %}

Embedding other Controllers

And what if you want to embed the result of another controller in a template? That's very useful when
working with Ajax, or when the embedded template needs some variable not available in the main
template.

Suppose you've created a topArticlesAction controller method to display the most popular articles of
your website. If you want to "render" the result of that method (e.g. HTML) inside the index template, use
the render function:

1
2

{# src/Acme/DemoBundle/Resources/views/Demo/index.html.twig #}
{{ render(controller("AcmeDemoBundle:Demo:topArticles", {'num': 10})) }}

Here, the AcmeDemoBundle:Demo:topArticles string refers to the topArticlesAction action of the
Demo controller, and the num argument is made available to the controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/Acme/DemoBundle/Controller/DemoController.php

class DemoController extends Controller
{

public function topArticlesAction($num)
{

// look for the $num most popular articles in the database
$articles = ...;

return $this->render('AcmeDemoBundle:Demo:topArticles.html.twig', array(
'articles' => $articles,

));
}

// ...
}

Creating Links between Pages

Creating links between pages is a must for web applications. Instead of hardcoding URLs in templates,
the path function knows how to generate URLs based on the routing configuration. That way, all your
URLs can be easily updated by just changing the configuration:

1 <a href="{{ path('_demo_hello', { 'name': 'Thomas' }) }}">Greet Thomas!</a>

The path function takes the route name and an array of parameters as arguments. The route name is the
key under which routes are defined and the parameters are the values of the variables defined in the route
pattern:

1
2

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

PDF brought to you by
generated on November 27, 2014

Chapter 2: The View | 15

http://sensiolabs.com


Listing 2-13

3
4
5
6
7
8
9

10
11
12
13
14

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
* @Route("/hello/{name}", name="_demo_hello")
* @Template()
*/
public function helloAction($name)
{

return array('name' => $name);
}

The url function is very similar to the path function, but generates absolute URLs, which is very
handy when rendering emails and RSS files: {{ url('_demo_hello', {'name': 'Thomas'}) }}.

Including Assets: Images, JavaScripts and Stylesheets

What would the Internet be without images, JavaScripts, and stylesheets? Symfony provides the asset
function to deal with them easily:

1
2
3

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" type="text/css" />

<img src="{{ asset('images/logo.png') }}" />

The asset function's main purpose is to make your application more portable. Thanks to this function,
you can move the application root directory anywhere under your web root directory without changing
anything in your template's code.

Final Thoughts
Twig is simple yet powerful. Thanks to layouts, blocks, templates and action inclusions, it is very easy to
organize your templates in a logical and extensible way. However, if you're not comfortable with Twig,
you can always use PHP templates inside Symfony without any issues.

You have only been working with Symfony for about 20 minutes, but you can already do pretty amazing
stuff with it. That's the power of Symfony. Learning the basics is easy, and you will soon learn that this
simplicity is hidden under a very flexible architecture.

But I'm getting ahead of myself. First, you need to learn more about the controller and that's exactly the
topic of the next part of this tutorial. Ready for another 10 minutes with Symfony?

PDF brought to you by
generated on November 27, 2014

Chapter 2: The View | 16

http://sensiolabs.com


Listing 3-1

Listing 3-2

Chapter 3

The Controller

Still here after the first two parts? You are already becoming a Symfony addict! Without further ado,
discover what controllers can do for you.

Using Formats
Nowadays, a web application should be able to deliver more than just HTML pages. From XML for RSS
feeds or Web Services, to JSON for Ajax requests, there are plenty of different formats to choose from.
Supporting those formats in Symfony is straightforward. Tweak the route by adding a default value of
xml for the _format variable:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
* @Route("/hello/{name}", defaults={"_format"="xml"}, name="_demo_hello")
* @Template()
*/
public function helloAction($name)
{

return array('name' => $name);
}

By using the request format (as defined by the special _format variable), Symfony automatically selects
the right template, here hello.xml.twig:

1
2
3
4

<!-- src/Acme/DemoBundle/Resources/views/Demo/hello.xml.twig -->
<hello>

<name>{{ name }}</name>
</hello>

PDF brought to you by
generated on November 27, 2014

Chapter 3: The Controller | 17

http://sensiolabs.com


Listing 3-3

Listing 3-4

Listing 3-5

Listing 3-6

That's all there is to it. For standard formats, Symfony will also automatically choose the best Content-
Type header for the response. If you want to support different formats for a single action, use the
{_format} placeholder in the route path instead:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
* @Route(
*     "/hello/{name}.{_format}",
*     defaults = { "_format" = "html" },
*     requirements = { "_format" = "html|xml|json" },
*     name = "_demo_hello"
* )
* @Template()
*/
public function helloAction($name)
{

return array('name' => $name);
}

The controller will now match URLs like /demo/hello/Fabien.xml or /demo/hello/Fabien.json.

The requirements entry defines regular expressions that variables must match. In this example, if you
try to request the /demo/hello/Fabien.js resource, you will get a 404 HTTP error, as it does not match
the _format requirement.

Redirecting and Forwarding
If you want to redirect the user to another page, use the redirect() method:

1 return $this->redirect($this->generateUrl('_demo_hello', array('name' => 'Lucas')));

The generateUrl() is the same method as the path() function used in the templates. It takes the route
name and an array of parameters as arguments and returns the associated friendly URL.

You can also internally forward the action to another using the forward() method:

1
2
3
4

return $this->forward('AcmeDemoBundle:Hello:fancy', array(
'name' => $name,
'color' => 'green'

));

Displaying Error Pages
Errors will inevitably happen during the execution of every web application. In the case of 404 errors,
Symfony includes a handy shortcut that you can use in your controllers:

1 throw $this->createNotFoundException();

PDF brought to you by
generated on November 27, 2014

Chapter 3: The Controller | 18

http://sensiolabs.com


Listing 3-7

Listing 3-8

Listing 3-9

Listing 3-10

For 500 errors, just throw a regular PHP exception inside the controller and Symfony will transform it
into a proper 500 error page:

1 throw new \Exception('Something went wrong!');

Getting Information from the Request
Symfony automatically injects the Request object when the controller has an argument that's type hinted
with Symfony\Component\HttpFoundation\Request:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array('en', 'fr'));

$request->query->get('page'); // get a $_GET parameter

$request->request->get('page'); // get a $_POST parameter
}

In a template, you can also access the Request object via the app.request variable:

1
2
3

{{ app.request.query.get('page') }}

{{ app.request.parameter('page') }}

Persisting Data in the Session
Even if the HTTP protocol is stateless, Symfony provides a nice session object that represents the client
(be it a real person using a browser, a bot, or a web service). Between two requests, Symfony stores the
attributes in a cookie by using native PHP sessions.

Storing and retrieving information from the session can be easily achieved from any controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{

$session = $request->getSession();

// store an attribute for reuse during a later user request
$session->set('foo', 'bar');

// get the value of a session attribute
$foo = $session->get('foo');

// use a default value if the attribute doesn't exist
$foo = $session->get('foo', 'default_value');

}

PDF brought to you by
generated on November 27, 2014

Chapter 3: The Controller | 19

http://sensiolabs.com


Listing 3-11

Listing 3-12

Listing 3-13

You can also store "flash messages" that will auto-delete after the next request. They are useful when
you need to set a success message before redirecting the user to another page (which will then show the
message):

1
2

// store a message for the very next request (in a controller)
$session->getFlashBag()->add('notice', 'Congratulations, your action succeeded!');

1
2

{# display the flash message in the template #}
<div>{{ app.session.flashbag.get('notice') }}</div>

Caching Resources
As soon as your website starts to generate more traffic, you will want to avoid generating the same
resource again and again. Symfony uses HTTP cache headers to manage resources cache. For simple
caching strategies, use the convenient @Cache() annotation:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Cache;

/**
* @Route("/hello/{name}", name="_demo_hello")
* @Template()
* @Cache(maxage="86400")
*/
public function helloAction($name)
{

return array('name' => $name);
}

In this example, the resource will be cached for a day (86400 seconds). Resource caching is managed by
Symfony itself. But because caching is managed using standard HTTP cache headers, you can use Varnish
or Squid without having to modify a single line of code in your application.

Final Thoughts
That's all there is to it, and I'm not even sure you'll have spent the full 10 minutes. You were briefly
introduced to bundles in the first part, and all the features you've learned about so far are part of the core
framework bundle. But thanks to bundles, everything in Symfony can be extended or replaced. That's the
topic of the next part of this tutorial.

PDF brought to you by
generated on November 27, 2014

Chapter 3: The Controller | 20

http://sensiolabs.com


Listing 4-1

Chapter 4

The Architecture

You are my hero! Who would have thought that you would still be here after the first three parts? Your
efforts will be well rewarded soon. The first three parts didn't look too deeply at the architecture of
the framework. Because it makes Symfony stand apart from the framework crowd, let's dive into the
architecture now.

Understanding the Directory Structure
The directory structure of a Symfony application is rather flexible, but the recommended structure is as
follows:

• app/: the application configuration;
• src/: the project's PHP code;
• vendor/: the third-party dependencies;
• web/: the web root directory.

The web/ Directory

The web root directory is the home of all public and static files like images, stylesheets, and JavaScript
files. It is also where each front controller lives:

1
2
3
4
5
6
7
8
9

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

The controller first bootstraps the application using a kernel class (AppKernel in this case). Then, it
creates the Request object using the PHP's global variables and passes it to the kernel. The last step is to
send the response contents returned by the kernel back to the user.

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 21

http://sensiolabs.com


Listing 4-2

The app/ Directory

The AppKernel class is the main entry point of the application configuration and as such, it is stored in
the app/ directory.

This class must implement two methods:

• registerBundles() must return an array of all bundles needed to run the application;
• registerContainerConfiguration() loads the application configuration (more on this

later).

Autoloading is handled automatically via Composer1, which means that you can use any PHP class
without doing anything at all! All dependencies are stored under the vendor/ directory, but this is just a
convention. You can store them wherever you want, globally on your server or locally in your projects.

Understanding the Bundle System
This section introduces one of the greatest and most powerful features of Symfony, the bundle system.

A bundle is kind of like a plugin in other software. So why is it called a bundle and not a plugin? This is
because everything is a bundle in Symfony, from the core framework features to the code you write for
your application.

Bundles are first-class citizens in Symfony. This gives you the flexibility to use pre-built features packaged
in third-party bundles or to distribute your own bundles. It makes it easy to pick and choose which
features to enable in your application and optimize them the way you want. And at the end of the day,
your application code is just as important as the core framework itself.

Registering a Bundle

An application is made up of bundles as defined in the registerBundles() method of the AppKernel
class. Each bundle is a directory that contains a single Bundle class that describes it:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\SecurityBundle\SecurityBundle(),
new Symfony\Bundle\TwigBundle\TwigBundle(),
new Symfony\Bundle\MonologBundle\MonologBundle(),
new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
new Symfony\Bundle\AsseticBundle\AsseticBundle(),
new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),

);

if (in_array($this->getEnvironment(), array('dev', 'test'))) {
$bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
$bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
$bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
$bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();

}

return $bundles;
}

1. http://getcomposer.org

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 22

http://sensiolabs.com


Listing 4-3

In addition to the AcmeDemoBundle that was already talked about, notice that the kernel also enables
other bundles such as the FrameworkBundle, DoctrineBundle, SwiftmailerBundle and AsseticBundle
bundle. They are all part of the core framework.

Configuring a Bundle

Each bundle can be customized via configuration files written in YAML, XML, or PHP. Have a look at
the default Symfony configuration:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

# app/config/config.yml
imports:

- { resource: parameters.yml }
- { resource: security.yml }

framework:
#esi:             ~
#translator:      { fallback: "%locale%" }
secret: "%secret%"
router:

resource: "%kernel.root_dir%/config/routing.yml"
strict_requirements: "%kernel.debug%"

form: true
csrf_protection: true
validation: { enable_annotations: true }
templating: { engines: ['twig'] } #assets_version: SomeVersionScheme
default_locale: "%locale%"
trusted_proxies: ~
session: ~

# Twig Configuration
twig:

debug: "%kernel.debug%"
strict_variables: "%kernel.debug%"

# Assetic Configuration
assetic:

debug: "%kernel.debug%"
use_controller: false
bundles: [ ]
#java: /usr/bin/java
filters:

cssrewrite: ~
#closure:
#    jar: "%kernel.root_dir%/Resources/java/compiler.jar"
#yui_css:
#    jar: "%kernel.root_dir%/Resources/java/yuicompressor-2.4.7.jar"

# Doctrine Configuration
doctrine:

dbal:
driver: "%database_driver%"
host: "%database_host%"
port: "%database_port%"
dbname: "%database_name%"
user: "%database_user%"
password: "%database_password%"
charset: UTF8

orm:

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 23

http://sensiolabs.com


Listing 4-4

51
52
53
54
55
56
57
58
59
60

auto_generate_proxy_classes: "%kernel.debug%"
auto_mapping: true

# Swift Mailer Configuration
swiftmailer:

transport: "%mailer_transport%"
host: "%mailer_host%"
username: "%mailer_user%"
password: "%mailer_password%"
spool: { type: memory }

Each first level entry like framework, twig or doctrine defines the configuration for a specific bundle.
For example, framework configures the FrameworkBundle while swiftmailer configures the
SwiftmailerBundle.

Each environment can override the default configuration by providing a specific configuration file. For
example, the dev environment loads the config_dev.yml file, which loads the main configuration (i.e.
config.yml) and then modifies it to add some debugging tools:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

# app/config/config_dev.yml
imports:

- { resource: config.yml }

framework:
router: { resource: "%kernel.root_dir%/config/routing_dev.yml" }
profiler: { only_exceptions: false }

web_profiler:
toolbar: true
intercept_redirects: false

monolog:
handlers:

main:
type: stream
path: "%kernel.logs_dir%/%kernel.environment%.log"
level: debug

firephp:
type: firephp
level: info

assetic:
use_controller: true

Extending a Bundle

In addition to being a nice way to organize and configure your code, a bundle can extend another bundle.
Bundle inheritance allows you to override any existing bundle in order to customize its controllers,
templates, or any of its files. This is where the logical names (e.g. @AcmeDemoBundle/Controller/
SecuredController.php) come in handy: they abstract where the resource is actually stored.

Logical File Names

When you want to reference a file from a bundle, use this notation: @BUNDLE_NAME/path/to/file;
Symfony will resolve @BUNDLE_NAME to the real path to the bundle. For instance, the logical path
@AcmeDemoBundle/Controller/DemoController.php would be converted to src/Acme/DemoBundle/
Controller/DemoController.php, because Symfony knows the location of the AcmeDemoBundle.

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 24

http://sensiolabs.com


Listing 4-5

Logical Controller Names

For controllers, you need to reference method names using the format
BUNDLE_NAME:CONTROLLER_NAME:ACTION_NAME. For instance, AcmeDemoBundle:Welcome:index maps to
the indexAction method from the Acme\DemoBundle\Controller\WelcomeController class.

Logical Template Names

For templates, the logical name AcmeDemoBundle:Welcome:index.html.twig is converted to the file
path src/Acme/DemoBundle/Resources/views/Welcome/index.html.twig. Templates become even
more interesting when you realize they don't need to be stored on the filesystem. You can easily store
them in a database table for instance.

Extending Bundles

If you follow these conventions, then you can use bundle inheritance to "override" files, controllers
or templates. For example, you can create a bundle - AcmeNewBundle - and specify that it overrides
AcmeDemoBundle. When Symfony loads the AcmeDemoBundle:Welcome:index controller, it will first
look for the WelcomeController class in AcmeNewBundle and, if it doesn't exist, then look inside
AcmeDemoBundle. This means that one bundle can override almost any part of another bundle!

Do you understand now why Symfony is so flexible? Share your bundles between applications, store
them locally or globally, your choice.

Using Vendors
Odds are that your application will depend on third-party libraries. Those should be stored in the
vendor/ directory. This directory already contains the Symfony libraries, the SwiftMailer library, the
Doctrine ORM, the Twig templating system, and some other third party libraries and bundles.

Understanding the Cache and Logs
Symfony is probably one of the fastest full-stack frameworks around. But how can it be so fast if it
parses and interprets tens of YAML and XML files for each request? The speed is partly due to its cache
system. The application configuration is only parsed for the very first request and then compiled down to
plain PHP code stored in the app/cache/ directory. In the development environment, Symfony is smart
enough to flush the cache when you change a file. But in the production environment, to speed things
up, it is your responsibility to clear the cache when you update your code or change its configuration.

When developing a web application, things can go wrong in many ways. The log files in the app/logs/
directory tell you everything about the requests and help you fix the problem quickly.

Using the Command Line Interface
Each application comes with a command line interface tool (app/console) that helps you maintain your
application. It provides commands that boost your productivity by automating tedious and repetitive
tasks.

Run it without any arguments to learn more about its capabilities:

1 $ php app/console

The --help option helps you discover the usage of a command:

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 25

http://sensiolabs.com


Listing 4-6 1 $ php app/console router:debug --help

Final Thoughts
Call me crazy, but after reading this part, you should be comfortable with moving things around and
making Symfony work for you. Everything in Symfony is designed to get out of your way. So, feel free to
rename and move directories around as you see fit.

And that's all for the quick tour. From testing to sending emails, you still need to learn a lot to become
a Symfony master. Ready to dig into these topics now? Look no further - go to the official The Book and
pick any topic you want.

PDF brought to you by
generated on November 27, 2014

Chapter 4: The Architecture | 26

http://sensiolabs.com





	The Quick Tour for Symfony 2.5 generated on November 27, 2014
	What could be better to make up your own mind than to try out Symfony yourself? Aside from a little time, it will cost you nothing. Step by step you will explore the Symfony universe. Be careful, Symfony can become addictive from the very first encounter!

	Contents at a Glance
	The Big Picture
	Installing Symfony
	Running Symfony
	Understanding the Fundamentals
	Routing
	Controllers
	Templates
	Bundles

	Working with Environments
	What is an Environment?

	Final Thoughts

	The View
	Getting familiar with Twig
	Decorating Templates
	Using Tags, Filters, and Functions
	Including other Templates
	Embedding other Controllers
	Creating Links between Pages
	Including Assets: Images, JavaScripts and Stylesheets

	Final Thoughts

	The Controller
	Using Formats
	Redirecting and Forwarding
	Displaying Error Pages
	Getting Information from the Request
	Persisting Data in the Session
	Caching Resources
	Final Thoughts

	The Architecture
	Understanding the Directory Structure
	The web/ Directory
	The app/ Directory

	Understanding the Bundle System
	Registering a Bundle
	Configuring a Bundle
	Extending a Bundle
	Logical File Names
	Logical Controller Names
	Logical Template Names
	Extending Bundles


	Using Vendors
	Understanding the Cache and Logs
	Using the Command Line Interface
	Final Thoughts


